加入收藏 | 访问烟台大学首页
首页 > 师资力量 > 正文

杨 旻

作者: 时间:2018-06-08 点击数:

教师简介

姓名

杨旻

性别

E-mail

yang@ytu.edu.cn

民族

专业

计算数学

职称

教授

研究方向

机器学习、科学计算、数据分析

工作地址

烟台大学数学院310

时 间

单位

经 历

1996.09—2005.06

山东大学数学院

学士,硕士,博士

2005.07—2006.06

厦门大学数学科学学院

讲师

2006.07—至今

烟台大学数学院

讲师,副教授,教授

2022年 山东省自然科学二等奖,“二阶偏微分方程有限体积元算法的构造、实现及理论研究”,毕春加,杨旻,陈传军

2016年 山东省高等学校科学技术一等奖,“有限体积元方法的理论研究及应用”,陈传军,毕春加,杨旻

2010年 山东省高校优秀科研成果二等奖/烟台大学科技进步一等奖,“有限体积元方法的高性能算法及应用”,杨旻,毕春加,陈传军

2008年 山东省高校优秀科研成果三等奖/烟台大学科技进步一等奖,“有限体积元方法的理论分析及其应用”,毕春加,杨旻,陈传军

2021.1-2024.12, “二阶非线性椭圆方程的多层线性化方法及其自适应算法”,山东省自然科学基金(ZR2021MA010),3/4

2018.10-2019.9 “大规模建筑图片的智能化处理”,中国建筑技术集团有限公司,1/2

2018.3-2021.6 “奇异摄动问题的稳定化局部守恒数值方法及其在多孔介质流中的应用”,山东省自然科学基金 (ZR2018MA008),1/4

2018.1-2021.12 “奇异摄动问题有限元方法的超逼近性研究”,国家自然科学基金 (11771257),2/6

2016.1-2019.12 “两阶非线性椭圆问题有限元方法的自适应多重网格算法”,国家自然科学基金 (11571297),2/7

2015.1-2017.12 “非线性椭圆问题有限体积元方法的后验误差估计和自适应算法”,山东省自然科学基金 (ZR2014AM003),2/5

2013.1-2015.12 “油藏两相流的局部守恒型多域耦合数值方法及其分析”,国家自然科学青年基金(11201405),1/1

2010.11-2013.11“非稳态Navier-Stokes问题基于算子分裂的无散度特征有限元方法”,山东省自然科学基金(ZR2010AQ020),1/1

2010.6-2013.5“界面问题的高精度有限体积元方法”,山东省教育厅高等学校科技计划(J10LA01),1/1

2009.6-2012.5“非线性问题的几类数值方法的后验误差估计与自适应算法”,山东省教育厅高等学校科技计划(J09LA01),2/3

科研论文

1. Guodong Zhang, Min Yang, Yinnian He, Block preconditioners for energy stable schemes of magnetohydrodynamics equations, Numer. Methods PDEs, 39(2023), 501-522.

2. Cong Xu, Xiang Li, Min Yang, An orthogonal classifier for improving the adversarial robustness of neuralnetworks, Inform. Sciences, 591(2022), 251-262.

3. Cong Xu, Dan Li, Min Yang, Adversarial momentum-contrastive pre-training,Pattern Recog. Lett.,160(2022), 172-179.

4. Xiaowei Liu, Min Yang,Error estimations in the balanced norm of finite element method on Bakhvalov Shishkin triangular mesh for reaction-diffusion problems, Appl. Math. Lett.,123(2022), 107523.

5. Yufeng Wang, Cong Xu, Min Yang, Jin Zhang,Lessemphasis ondifficultlayerregions: Curriculumlearning forsingularlyperturbedconvection-diffusion-reactionproblems, arXiv:2210.12685, 2022.

6. Cong Xu, Min Yang, Understanding adversarial robustness from feature maps of convolutional layers,

arXiv:2202.12435, 2022.

7. Yufeng Wang, Dan Li, Cong Xu, Min Yang, Improve deep image inpainting by emphasizing the complexity of missing regions,arXiv:2202.06266, 2022.

8. Yufeng Wang, Dan Li, Cong Xu, Min Yang, Missingness augmentation: A general approach for improving generative imputation models,arXiv:2108.02566, 2021.

9. Yufeng Wang, Dan Li, Xiang Li, Min Yang,PC-GAIN:Pseudo-label conditional generative adversarialimputation networks for incomplete data,Neural Networks,141(2021), 395-403.

10. Cong Xu, Dan Li, Min Yang, Improve adversarial robustness via weight penalization on classification layer, arXiv:2010.03844, 2020.

11. Cong Xu, Min Yang, Jin Zhang, Fast deflation sparse principal component analysis via subspace projections, J. Statistical Comput. Sim., 20(2020), 1399-1412.

12. Yuanyuan Zhang, Min Yang, A posteriori error analysis of any order finite volume methods for elliptic problems, Adv. Appl. Math. Mech., 12 (2020), 564-578

13. Yuanyuan Zhang, Min Yang, Chuanjun Chen,The hybrid Wilson finite volume method for elliptic problems on quadrilateral meshes, Adv. Comput. Math.,45(2019), 429-452

14. 杨旻,于宪荣,题库查找问题的一类简单局部采样算法,计算机应用与软件,34(2017), No.12, 216- 219, 239

15. Jin Zhang, Xiaowei Liu, Min Yang, Optimal order L2 error estimate of SDFEM on Shishkin triangular meshes for singularly perturbed convection-diffusion equations, SIAM J. Numer. Anal. 54 (2016) 2060-2080

16. Lejuan Wang, Min Yang, A high order finite volume method for one dimensional nonlocal reactive flows of parabolic type, Math. Method. Appl. Sci., 39 (2016) 2065--2077.

17. Min Yang, Jiangguo Liu, Qingsong Zou, Unified analysis of higher order finite volume methods for parabolic problems on quadrilateral meshes, IMA J. Numer. Anal., 36 (2016) 872--896

18. Yanping Lin, Min Yang, Qingsong Zou, L2 error estimates for a class of any order finite volume schemes over quadrilateral meshes, SIAM J. Numer. Anal., 53 (2015) 2030--2050

19. Min Yang, Jiangguo Liu, Yanping Lin, Pressure recovery for weakly over-penalized discontinuous Galerkin methods for the Stokes problem, J. Sci. Comput., 2015, 699-715.

20. Min Yang, Couplings of mixed finite element and weak Galerkin methods for elliptic problems, J. Appl. Math. Computing, 2015, 327-343.

21. Min Yang, Higher-order finite volume element methods based on Barlow points for one dimensional elliptic and parabolic problems, Numer. Methods PDEs, 2015, 977-994.

22. Min Yang, Jiangguo Liu, Yanping Lin, Quadratic finite volume methods for elliptic and parabolic problems on quadrilateral meshes: Optimal order errors based on Barlow points, IMA J. Numer. Anal. 33 (2013), 1342-1364.

23. Chunjia Bi, Yanping Lin, Min Yang, Finite volume element method for monotone nonlinear elliptic problems, Numer. Methods PDEs, 29 (2013), 1097-1120.

24. Yanping Lin, Jiangguo Liu, Min Yang, Finite volume element methods: An overview of recent developments, Int. J. Numer. Anal. Model. B, 2013, 14-34.

25. Min Yang, L2 error estimation of a quadratic finite volume element method for pseudo-parabolic equations in three spatial dimensions, Appl. Math. Comput. 218 (2012) , 7270-7278.

26. Min Yang, Jiangguo Liu, A quadratic finite volume element method for parabolic problems on quadrilateral meshes, IMA J Numer. Anal. 31 (2011), 1038-1061.

27. Min Yang, A posteriori error analysis of nonconforming finite volume elements for general second order elliptic PDEs, Numer. Methods PDEs 27(2011), 277-291.

28. Min Yang, Two time level ADI finite volume method for a class of second order hyperbolic problems, Appl. Math. Comput. 215(2010), 3239-3248.

29. Min Yang, Chunjia Bi, Jiangguo Liu, Postprocessing of a finite volume element method for semilinear parabolic problems, ESAIM: Math. Model. Numer. Anal. (M2AN) 43(2009), 957-971.

30. Min Yang, Chuanjun Chen, ADI quadratic finite volume element methods for second order hyperbolic problems, J. Appl. Math. Computing 31(2009) , 395-411.

31. Min Yang, Huailing Song, A postprocessing finite volume element method for time-dependent Stokes equations, Appl. Numer. Math. 59 (2009), 1922-1932.

32. Min Yang, Jiangguo Liu, Chuanjun Chen, Error estimation of a quadratic finite volume method on right quadrangular prism grids, J. Comput. Appl. Math. 229 (2009), 274-282.

33. Chuanjun Chen, Min Yang, Chunjia Bi, Two grid methods for finite volume element approximations of nonlinear parabolic equations, J. Comput. Appl. Math. 228 (2009) 123-132.

34. Min Yang, Yirang Yuan, A symmetric characteristic finite volume element scheme for nonlinear convection-diffusion problems. Acta Math. Appl. Sin. Engl. Ser. 24 (2008), 41-54.

35. Min Yang, A multistep finite volume method with penalty for thermal convection problems in two or three dimensions. J. Syst. Sci. Complex. 21 (2008), 129-143.

36. Min Yang, Analysis of second order finite volume element methods for pseudo-parabolic equations in three spatial dimensions. Appl. Math. Comput. 196 (2008), 94-104.

37. Min Yang, Multistep finite volume approximations to the transient behavior of a semiconductor device on general 2D or 3D meshes. J. Comput. Math. 25 (2007), 485-496.

38. Min Yang, Yirang Yuan, A symmetric characteristic FVE method with second order accuracy for nonlinear convection diffusion problems. J. Comput. Appl. Math. 200 (2007), no. 2, 677-700.

39. Min Yang, A second-order finite volume element method on quadrilateral meshes for elliptic equations. ESAIM: Math. Model. Numer. Anal. (M2AN) 40 (2006), no. 6, 1053-1067.

40. Min Yang, Yirang Yuan, Symmetric finite volume element methods along characteristics for 3-D convection diffusion problems. Far East J. Appl. Math. 25 (2006), no. 3, 225-251.

41. 杨旻,袁益让,半正定两相驱动问题的多步有限体积方法及其理论分析,系统科学与数学,26(2006), 541-552.

42. 杨旻,袁益让,非线性抛物型方程组的二次有限体积方法及其误差估计,应用数学学报,29(2006),29-38.

43. 杨旻,张进,对流扩散方程带罚函数项的有限体积格式及其分析,高等学校计算数学学报,28(2006), 26-32

44. Yang Min, Cubic finite volume methods for second order elliptic equations with variable coefficients, Northeast. Math. J. 21(2005), 146-152.

45. 杨旻,非线性抛物型方程的二次元有限体积方法,高等学校计算数学学报,26(2004), 257-266.

46. 杨旻,袁益让,非线性对流扩散方程沿特征线的多步有限体积格式,计算数学,26(2004), 484-496.

47. 杨旻,非线性双曲型方程的广义差分方法及其误差估计,山东大学学报(理学版),38(2003), No.4,1-6.

情况

2013王乐娟,于文莉;2016陈倩,潘执政;2017李振,盖程鹏;2019 徐聪,魏鹏飞,辛梦琦;

2020王寓枫;2021 高瑞松 张攀;2022李家蕊 李佳城 刘泓辰 王伯凤

Copyright © 2018 All Rights Reserved 云顶国际yd222 - 云顶国际官网唯一官方网站
版权所有  鲁ICP备15000288 号